*** Welcome to piglix ***

Hurwitz's theorem (normed division algebras)


In mathematics, Hurwitz's theorem is a theorem of Adolf Hurwitz (1859–1919), published posthumously in 1923, solving the Hurwitz problem for finite-dimensional unital real non-associative algebras endowed with a positive-definite quadratic form. The theorem states that if the quadratic form defines a homomorphism into the positive real numbers on the non-zero part of the algebra, then the algebra must be isomorphic to the real numbers, the complex numbers, the quaternions or the octonions. Such algebras, sometimes called Hurwitz algebras, are examples of composition algebras.

The theory of composition algebras has subsequently been generalized to arbitrary quadratic forms and arbitrary fields. Hurwitz's theorem implies that multiplicative formulas for sums of squares can only occur in 1, 2, 4 and 8 dimensions, a result originally proved by Hurwitz in 1898. It is a special case of the Hurwitz problem, solved also in Radon (1922). Subsequent proofs of the restrictions on the dimension have been given by Eckmann (1943) using the representation theory of finite groups and by Lee (1948) and Chevalley (1954) using Clifford algebras. Hurwitz's theorem has been applied in algebraic topology to problems on vector fields on spheres and the homotopy groups of the classical groups and in quantum mechanics to the classification of simple Jordan algebras.


...
Wikipedia

...