In mathematics, a mutation, also called a homotope, of a unital Jordan algebra is a new Jordan algebra defined by a given element of the Jordan algebra. The mutation has a unit if and only if the given element is invertible, in which case the mutation is called a proper mutation or an isotope. Mutations were first introduced by Max Koecher in his Jordan algebraic approach to Hermitian symmetric spaces and bounded symmetric domains of tube type. Their functorial properties allow an explicit construction of the corresponding Hermitian symmetric space of compact type as a compactification of a finite-dimensional complex semisimple Jordan algebra. The automorphism group of the compactification becomes a complex subgroup, the complexification of its maximal compact subgroup. Both groups act transitively on the compactification. The theory has been extended to cover all Hermitian symmetric spaces using the theory of Jordan pairs or Jordan triple systems. Koecher obtained the results in the more general case directly from the Jordan algebra case using the fact that only Jordan pairs associated with period two automorphisms of Jordan algebras are required.
Let A be a unital Jordan algebra over a field k of characteristic ≠ 2. For a in A define the Jordan multiplication operator on A by
and the quadratic representation Q(a) by
It satisfies
the commutation or homotopy identity
where
In particular if a or b is invertible then
It follows that A with the operations Q and R and the identity element defines a quadratic Jordan algebra, where a quadratic Jordan algebra consists of a vector space A with a distinguished element 1 and a quadratic map of A into endomorphisms of A, a ↦ Q(a), satisfying the conditions: