*** Welcome to piglix ***

Maximal compact subgroup


In mathematics, a maximal compact subgroup K of a topological group G is a subgroup K that is a compact space, in the subspace topology, and maximal amongst such subgroups.

Maximal compact subgroups play an important role in the classification of Lie groups and especially semi-simple Lie groups. Maximal compact subgroups of Lie groups are not in general unique, but are unique up to conjugation – they are essentially unique.

An example would be the subgroup O(2), the orthogonal group, inside the general linear group GL(2, R). A related example is the circle group SO(2) inside SL(2, R). Evidently SO(2) inside GL(2, R) is compact and not maximal. The non-uniqueness of these examples can be seen as any inner product has an associated orthogonal group, and the essential uniqueness corresponds to the essential uniqueness of the inner product.

A maximal compact subgroup is a maximal subgroup amongst compact subgroups – a maximal (compact subgroup) – rather than being (alternate possible reading) a maximal subgroup that happens to be compact; which would probably be called a compact (maximal subgroup), but in any case is not the intended meaning (and in fact maximal proper subgroups are not in general compact).

The Cartan-Iwasawa-Malcev theorem asserts that every connected Lie group (and indeed every connected locally compact group) admits maximal compact subgroups and that they are all conjugate to one another. For a semisimple Lie group uniqueness is a consequence of the Cartan fixed point theorem, which asserts that if a compact group acts by isometries on a complete simply connected negatively curved Riemannian manifold then it has a fixed point.


...
Wikipedia

...