*** Welcome to piglix ***

Honeywell 6000 series


The Honeywell 6000 series computers were rebadged versions of General Electric's 600-series mainframes manufactured by Honeywell International, Inc. from 1970 to 1989. Honeywell acquired the line when it purchased GE's computer division in 1966 and continued to develop them under a variety of names for many years.

The high-end model was the 6080, with performance approximately 1 MIPS. Smaller models were the 6070, 6060, 6050, 6040, and 6030. In 1973 a low-end 6025 was introduced. The even-numbered models included an Enhanced Instruction Set feature (EIS), which added decimal arithmetic and storage-to-storage operations to the original word-oriented architecture. In 1973 Honeywell introduced the 6180, a 6000-series machine with addressing modifications to support the Multics operating system. In 1975 the 6000-series systems were renamed as Level 66, which were slightly faster (to 1.2 MIPS) and offered larger memories. In 1977 the line was again renamed 66/DPS, and in 1979 to DPS-8, again with a small performance improvement to 1.7 MIPS. The Multics model was the DPS-8/M.

In 1989 Honeywell sold its computer division to the French company Groupe Bull who continued to market compatible machines.

6000-series systems were said to be "memory oriented"— a system controller in each memory module had eight ports for communication with other system components, with an interrupt cell for each port. Memory modules contained 128 K words of 1.2 μs 36-bit words; a system could support one or two memory modules for a maximum of 256 K words (1 MB of 9-bit bytes). Each module provided two-way interleaved memory.

The 6000 supported multiple processors. Each processor had four ports for connection to memory or I/O controllers. Memory protection and relocation was accomplished using a base and bounds register, the Base Address Register (BAR).

Devices called Input/Output Multiplexers (IOMs) served as intelligent I/O controllers for communication with most peripherals. The IOM was passed the contents of the BAR for each I/O request, allowing it to use virtual rather than physical addresses. The IOM supported two different types of peripheral channels: Common Peripheral Channels could handle data transfer rates up to 650,000 cps; Peripheral Subsystem Interface Channels allowed transfers up to 1.3 million cps.


...
Wikipedia

...