In computing, interleaved memory is a design made to compensate for the relatively slow speed of dynamic random-access memory (DRAM) or core memory, by spreading memory addresses evenly across memory banks. That way, contiguous memory reads and writes are using each memory bank in turn, resulting in higher memory throughputs due to reduced waiting for memory banks to become ready for desired operations.
It is different from multi-channel memory architectures, primarily as interleaved memory is not adding more channels between the main memory and the memory controller. However, channel interleaving is also possible, for example in freescale i.MX6 processors, which allow interleaving to be done between two channels.
With interleaved memory, memory addresses are allocated to each memory bank in turn. For example, in an interleaved system with two memory banks (assuming word-addressable memory), if logical address 32 belongs to bank 0, then logical address 33 would belong to bank 1, logical address 34 would belong to bank 0, and so on. An interleaved memory is said to be n-way interleaved when there are n banks and memory location i resides in bank i mod n.
Interleaved memory results in contiguous reads (which are common both in multimedia and execution of programs) and contiguous writes (which are used frequently when filling storage or communication buffers) actually using each memory bank in turn, instead of using the same one repeatedly. This results in significantly higher memory throughput as each bank has a minimum waiting time between reads and writes.
Main memory (random-access memory, RAM) is usually composed of a collection of DRAM memory chips, where a number of chips can be grouped together to form a memory bank. It is then possible, with a memory controller that supports interleaving, to lay out these memory banks so that the memory banks will be interleaved.