*** Welcome to piglix ***

Holographic memory


Holographic data storage is a potential technology in the area of high-capacity data storage currently dominated by magnetic data storage and conventional optical data storage. Magnetic and optical data storage devices rely on individual bits being stored as distinct magnetic or optical changes on the surface of the recording medium. Holographic data storage records information throughout the volume of the medium and is capable of recording multiple images in the same area utilizing light at different angles.

Additionally, whereas magnetic and optical data storage records information a bit at a time in a linear fashion, holographic storage is capable of recording and reading millions of bits in parallel, enabling data transfer rates greater than those attained by traditional optical storage.

Holographic data storage contains information using an optical interference pattern within a thick, photosensitive optical material. Light from a single laser beam is divided into two, or more, separate optical patterns of dark and light pixels. By adjusting the reference beam angle, wavelength, or media position, a multitude of holograms (theoretically, several thousands) can be stored on a single volume.

The stored data is read through the reproduction of the same reference beam used to create the hologram. The reference beam's light is focused on the photosensitive material, illuminating the appropriate interference pattern, the light diffracts on the interference pattern, and projects the pattern onto a detector. The detector is capable of reading the data in parallel, over one million bits at once, resulting in the fast data transfer rate. Files on the holographic drive can be accessed in less than 0.2 seconds.

Holographic data storage can provide companies a method to preserve and archive information. The write-once, read many (WORM) approach to data storage would ensure content security, preventing the information from being overwritten or modified. Manufacturers believe this technology can provide safe storage for content without degradation for more than 50 years, far exceeding current data storage options. Counterpoints to this claim are that the evolution of data reader technology has – in the last couple of decades – changed every ten years. If this trend continues, it therefore follows that being able to store data for 50–100 years on one format is irrelevant, because you would migrate the data to a new format after only ten years. However, claimed longevity of storage has, in the past, proven to be a key indicator of shorter-term reliability of storage media. Current optical formats – such as CD – have largely lived up to the original longevity claims (where reputable media makes are used) and have proved to be more reliable shorter-term data carriers than the floppy disk and DAT media they displaced.


...
Wikipedia

...