*** Welcome to piglix ***

His-tag


A polyhistidine-tag is an amino acid motif in proteins that consists of at least six histidine (His) residues, often at the N- or C-terminus of the protein. It is also known as hexa histidine-tag, 6xHis-tag, His6 tag and by the trademarked name His-tag (registered by EMD Biosciences). The tag was invented by Roche, although the use of histidines and its vectors are distributed by Qiagen. Various purification kits for histidine-tagged proteins are available from Qiagen, Sigma, Thermo Scientific, GE Healthcare, Macherey-Nagel, Clontech, Bio-Rad, and others.

The use of the tag for academic users is unrestricted; however, commercial users must pay royalties to Roche. The original patent expired on 11 Feb 2003, and thus should be now public property; current claims to royalties are based on a much narrower set of more recent patents. Suitable tag sequences are available free for commercial use; for example, MK(HQ)6 may be used for enhanced expression in E. coli and tag removal. The total number of histidine residues may vary in the tag. N- or C-terminal his-tags may also be followed or preceded, respectively, by a suitable amino acid sequence that facilitates a removal of the polyhistidine-tag using endopeptidases. This extra sequence is not necessary if exopeptidases are used to remove N-terminal His-tags (e.g., Qiagen TAGZyme). Furthermore, exopeptidase cleavage may solve the unspecific cleavage observed when using endoprotease-based tag removal. Polyhistidine-tags are often used for affinity purification of genetically modified proteins.

Polyhistidine-tags are often used for affinity purification of polyhistidine-tagged recombinant proteins expressed in Escherichia coli and other prokaryotic expression systems. Bacterial cells are harvested via centrifugation and the resulting cell pellet lysed either by physical means or by means of detergents and enzymes such as lysozyme or any combination of these. At this stage raw lysate contains the recombinant protein among many other proteins originating from the bacterial host. This mixture is incubated with an affinity resin containing bound divalent nickel or cobalt ions, which are available commercially in different varieties. Nickel and cobalt have similar properties and as they are adjacent period 4 transition metals ((v. iron triad)). These resins are generally sepharose/agarose functionalised with a chelator, such as iminodiacetic acid (Ni-IDA) and nitrilotriacetic acid (Ni-NTA) for nickel and carboxylmethylaspartate (Co-CMA) for cobalt, which the polyhistidine-tag binds with micromolar affinity. The resin is then washed with phosphate buffer to remove proteins that do not specifically interact with the cobalt or nickel ion. With Ni-based methods, washing efficiency can be improved by the addition of 20 mM imidazole (proteins are usually eluted with 150-300 mM imidazole). Generally nickel-based resins have higher binding capacity, while cobalt-based resins offer the highest purity. The purity and amount of protein can be assessed by SDS-PAGE and Western blotting.


...
Wikipedia

...