*** Welcome to piglix ***

Hilbert problems


Hilbert's problems are twenty-three problems in mathematics published by German mathematician David Hilbert in 1900. The problems were all unsolved at the time, and several of them were very influential for 20th-century mathematics. Hilbert presented ten of the problems (1, 2, 6, 7, 8, 13, 16, 19, 21 and 22) at the Paris conference of the International Congress of Mathematicians, speaking on August 8 in the Sorbonne. The complete list of 23 problems was published later, most notably in English translation in 1902 by Mary Frances Winston Newson in the Bulletin of the American Mathematical Society.

Hilbert's problems ranged greatly in topic and precision. Some of them are propounded precisely enough to enable a clear affirmative or negative answer, like the 3rd problem, which was the first to be solved, or the 8th problem (the Riemann hypothesis). For other problems, such as the 5th, experts have traditionally agreed on a single interpretation, and a solution to the accepted interpretation has been given, but closely related unsolved problems exist. Sometimes Hilbert's statements were not precise enough to specify a particular problem but were suggestive enough so that certain problems of more contemporary origin seem to apply, e.g. most modern number theorists would probably see the 9th problem as referring to the conjectural Langlands correspondence on representations of the absolute Galois group of a number field. Still other problems, such as the 11th and the 16th, concern what are now flourishing mathematical subdisciplines, like the theories of quadratic forms and real algebraic curves.

There are two problems that are not only unresolved but may in fact be unresolvable by modern standards. The 6th problem concerns the axiomatization of physics, a goal that twentieth century developments of physics (including its recognition as a discipline independent from mathematics) seem to render both more remote and less important than in Hilbert's time. Also, the 4th problem concerns the foundations of geometry, in a manner that is now generally judged to be too vague to enable a definitive answer.


...
Wikipedia

...