*** Welcome to piglix ***

Helmholtz resonance


Helmholtz resonance or wind throb is the phenomenon of air resonance in a cavity, such as when one blows across the top of an empty bottle. The name comes from a device created in the 1850s by Hermann von Helmholtz, the Helmholtz resonator, which he used to identify the various frequencies or musical pitches present in music and other complex sounds.

Helmholtz described in his 1862 book, "On the Sensations of Tone", an apparatus able to pick out specific frequencies from a complex sound. The Helmholtz resonator, as it is now called, consists of a rigid container of a known volume, nearly spherical in shape, with a small neck and hole in one end and a larger hole in the other end to admit the sound.

When the resonator's 'nipple' is placed inside one's ear, a specific frequency of the complex sound can be picked out and heard clearly. In Helmholtz’ book we read: When we "apply a resonator to the ear, most of the tones produced in the surrounding air will be considerably damped; but if the proper tone of the resonator is sounded, it brays into the ear most powerfully…. The proper tone of the resonator may even be sometimes heard cropping up in the whistling of the wind, the rattling of carriage wheels, the splashing of water."

A set of varied size resonators was sold to be used as discrete acoustic filters for the spectral analysis of complex sounds.

There is also an adjustable type, called a universal resonator, which consists of two cylinders, one inside the other, which can slide in or out to change the volume of the cavity over a continuous range. This type of resonator is in use in the Fourier analyzer, and is equivalent to tone variator in its function. When air is forced into a cavity, the pressure inside increases. When the external force pushing the air into the cavity is removed, the higher-pressure air inside will flow out. Due to the inertia of the moving air the cavity will be left at a pressure slightly lower than the outside, causing air to be drawn back in. This process repeats, with the magnitude of the pressure oscillations increasing and decreasing asymptotically after the sound starts and stops.


...
Wikipedia

...