In organic chemistry, helicenes are ortho-condensed polycyclic aromatic compounds in which benzene rings or other aromatics are angularly annulated to give helically-shaped molecules. The chemistry of helicenes has attracted continuing attention because of their unique structural, spectral, and optical features.
For helicenes with 6 benzene units a 360° turn is completed. In the helicene series the dihedral angles between the extremities increases going from [4]helicene (26°) to [6]helicene (58°) and then decreases again for example in [7]helicene (30°).
Helicenes are notable for having chirality despite lacking both asymmetric carbons and chiral centers. The chirality results from the handedness of the helicity itself. The clockwise and counterclockwise helices are non-superposable as a result of their axial chirality. By convention a left-handed helix is minus and labeled M, a right-handed helix is plus and labeled P. Evidence from CD spectroscopy suggests left-handed helices are levorotatory and right-handed helices are dextrorotatory.
The first helicene structure was reported by Jakob Meisenheimer in 1903 as the reduction product of 2-nitronaphthalene. [5]helicene was synthesised in 1918 by Weitzenböck & Klingler. The first [6]helicene (also called hexahelicene) was synthesized by M. S. Newman and D. Lednicer in 1955 via a scheme that closed the two central rings by Friedel–Crafts cyclization of carboxylic acid compounds. Since then, several methods for synthesizing helicenes with different lengths and substituents are used. The oxidative photocyclization of a stilbene-type precursor is used most often as the key step. The longest helicene, [14]helicene, was prepared in 1975 by this method.