*** Welcome to piglix ***

Heckman correction


The Heckman correction (the two-stage method, Heckman's lambda or the Heckit method) is any of a number of related statistical methods developed by James Heckman at the University of Chicago in 1976 to 1979 which allow the researcher to correct for selection bias. Selection bias problems are endemic to applied econometric problems, which make Heckman’s original technique, and subsequent refinements by both himself and others, indispensable to applied econometricians. Heckman received the Economics Nobel Prize in 2000 for this achievement.

Statistical analyses based on non-randomly selected samples can lead to erroneous conclusions and poor policy. The Heckman correction, a two-step statistical approach, offers a means of correcting for non-randomly selected samples.

Heckman discussed bias from using nonrandom selected samples to estimate behavioral relationships as a specification error. He suggests a two-stage estimation method to correct the bias. The correction uses a control function idea and is easy to implement. Heckman’s correction involves a normality assumption, provides a test for sample selection bias and formula for bias corrected model.

Suppose that a researcher wants to estimate the determinants of wage offers, but has access to wage observations for only those who work. Since people who work are selected non-randomly from the population, estimating the determinants of wages from the subpopulation who work may introduce bias. The Heckman correction takes place in two stages.

In the first stage, the researcher formulates a model, based on economic theory, for the probability of working. The canonical specification for this relationship is a probit regression of the form

where D indicates employment (D = 1 if the respondent is employed and D = 0 otherwise), Z is a vector of explanatory variables, is a vector of unknown parameters, and Φ is the cumulative distribution function of the standard normal distribution. Estimation of the model yields results that can be used to predict this employment probability for each individual.


...
Wikipedia

...