All electronic devices and circuitry generate excess heat and thus require thermal management to improve reliability and prevent premature failure. The amount of heat output is equal to the power input, if there are no other energy interactions. There are several techniques for cooling including various styles of heat sinks, thermoelectric coolers, forced air systems and fans, heat pipes, and others. In cases of extreme low environmental temperatures, it may actually be necessary to heat the electronic components to achieve satisfactory operation.
This is usually quoted as the thermal resistance from junction to case of the semiconductor device. The units are °C/W. For example, a heatsink rated at 10 °C/W will get 10 °C hotter than the surrounding air when it dissipates 1 Watt of heat. Thus, a heatsink with a low °C/W value is more efficient than a heatsink with a high °C/W value. Given two semiconductor devices in the same package, a lower junction to ambient resistance (RθJ-C) indicates a more efficient device. However, when comparing two devices with different die-free package thermal resistances (Ex. DirectFETTM MT vs wirebond 5x6mm PQFN), their junction to ambient or junction to case resistance values may not correlate directly to their comparative efficiencies. Different semiconductor packages may have different die orientations, different copper(or other metal) mass surrounding the die, different die attach mechanics, and different molding thickness, all of which could yield significantly different junction to case or junction to ambient resistance values, and could thus obscure overall efficiency numbers.
A heatsink's thermal mass can be considered as a capacitor (storing heat instead of charge) and the thermal resistance as an electrical resistance (giving a measure of how fast stored heat can be dissipated). Together, these two components form a thermal RC circuit with an associated time constant given by the product of R and C. This quantity can be used to calculate the dynamic heat dissipation capability of a device, in an analogous way to the electrical case.