A harmonograph is a mechanical apparatus that employs pendulums to create a geometric image. The drawings created typically are Lissajous curves, or related drawings of greater complexity. The devices, which began to appear in the mid-19th century and peaked in popularity in the 1890s, cannot be conclusively attributed to a single person, although Hugh Blackburn, a professor of mathematics at the University of Glasgow, is commonly believed to be the official inventor.
A simple, so-called "lateral" harmonograph uses two pendulums to control the movement of a pen relative to a drawing surface. One pendulum moves the pen back and forth along one axis and the other pendulum moves the drawing surface back and forth along a perpendicular axis. By varying the frequency and phase of the pendulums relative to one another, different patterns are created. Even a simple harmonograph as described can create ellipses, spirals, and other Lissajous figures.
More complex harmonographs incorporate three or more pendulums or linked pendulums together (for example hanging one pendulum off another), or involve rotary motion in which one or more pendulums is mounted on gimbals to allow movement in any direction.
A particular type of harmonograph, a pintograph, is based on the relative motion of two rotating disks, as illustrated in the links below.
A Blackburn pendulum is a device for illustrating simple harmonic motion, it was named after Hugh Blackburn, who described it in 1844. This was first discussed by James Dean in 1815 and analyzed mathematically by Nathaniel Bowditch in the same year. A bob is suspended from a string that in turn hangs from a V-shaped pair of strings, so that the pendulum oscillates simultaneously in two perpendicular directions with different periods. The bob consequently follows a path resembling a Lissajous curve; it belongs to the family of mechanical devices known as harmonographs.
Mid-20th century physics textbooks sometimes refer to this type of pendulum as a Double Pendulum.