In linear algebra, a Hankel matrix (or catalecticant matrix), named after Hermann Hankel, is a square matrix in which each ascending skew-diagonal from left to right is constant, e.g.:
Any n×n matrix A of the form
A=[a0a1a2……an−1a1a2⋮a2⋮⋮a2n−4⋮a2n−4a2n−3an−1……a2n−4a2n−3a2n−2]{\displaystyle A={\begin{bmatrix}a_{0}&a_{1}&a_{2}&\ldots &\ldots &a_{n-1}\\a_{1}&a_{2}&&&&\vdots \\a_{2}&&&&&\vdots \\\vdots &&&&&a_{2n-4}\\\vdots &&&&a_{2n-4}&a_{2n-3}\\a_{n-1}&\ldots &\ldots &a_{2n-4}&a_{2n-3}&a_{2n-2}\end{bmatrix}}}