In general relativity, the Hamilton–Jacobi–Einstein equation (HJEE) or Einstein–Hamilton–Jacobi equation (EHJE) is an equation in the Hamiltonian formulation of geometrodynamics in superspace, cast in the "geometrodynamics era" around the 1960s, by A. Peres in 1962 and others. It is an attempt to reformulate general relativity in such a way that it resembles quantum theory within a semiclassical approximation, much like the correspondence between quantum mechanics and classical mechanics.
It is named for Albert Einstein, Carl Gustav Jacob Jacobi, and William Rowan Hamilton. The EHJE contains as much information as all ten Einstein field equations (EFEs). It is a modification of the Hamilton–Jacobi equation (HJE) from classical mechanics, and can be derived from the Einstein–Hilbert action using the principle of least action in the ADM formalism.
In classical analytical mechanics, the dynamics of the system is summarized by the action S. In quantum theory, namely non-relativistic quantum mechanics (QM), relativistic quantum mechanics (RQM), as well as quantum field theory (QFT), with varying interpretations and mathematical formalisms in these theories, the behavior of a system is completely contained in a complex-valued probability amplitude Ψ (more formally as a quantum state ket |Ψ⟩ - an element of a Hilbert space). In the semiclassical Eikonal approximation: