A half reaction is either the oxidation or reduction reaction component of a redox reaction. A half reaction is obtained by considering the change in oxidation states of individual substances involved in the redox reaction.
Often, the concept of half-reactions is used to describe what occurs in an electrochemical cell, such as a Galvanic cell battery. Half-reactions can be written to describe both the metal undergoing oxidation (known as the anode) and the metal undergoing reduction (known as the cathode).
Half-reactions are often used as a method of balancing redox reactions. For oxidation-reduction reactions in acidic conditions, after balancing the atoms and oxidation numbers, one will need to add H+ ions to balance the hydrogen ions in the half reaction. For oxidation-reduction reactions in basic conditions, after balancing the atoms and oxidation numbers, first treat it as an acidic solution and then add OH− ions to balance the H+ ions in the half reactions (which would give H2O).
Consider the Galvanic cell shown in the adjacent image: it is constructed with a piece of zinc (Zn) submerged in a solution of zinc sulfate (ZnSO4) and a piece of copper (Cu) submerged in a solution of copper(II) sulfate (CuSO4). The overall reaction is:
At the Zn anode, oxidation takes place (the metal loses electrons). This is represented in the following oxidation half-reaction (note that the electrons are on the products side):
At the Cu cathode, reduction takes place (electrons are accepted). This is represented in the following reduction half-reaction (note that the electrons are on the reactants side):
Consider the example burning of magnesium ribbon (Mg). When magnesium burns, it combines with oxygen (O2) from the air to form magnesium oxide (MgO) according to the following equation:
Magnesium oxide is an ionic compound containing Mg2+ and O2− ions whereas Mg(s) and O2(g) are elements with no charges. The Mg(s) with zero charge gains a +2 charge going from the reactant side to product side, and the O2(g) with zero charge gains a -2 charge. This is because when Mg(s) becomes Mg2+, it loses 2 electrons. Since there are 2 Mg on left side, a total of 4 electrons are lost according to the following oxidation half reaction: