*** Welcome to piglix ***

HBM2


High Bandwidth Memory (HBM) is a high-performance RAM interface for 3D-stacked DRAM from AMD and Hynix. It is to be used in conjunction with high-performance graphics accelerators and network devices. The first devices to use HBM are the AMD Fiji GPUs.

High Bandwidth Memory has been adopted by JEDEC as an industry standard in October 2013. The second generation, HBM2, was accepted by JEDEC in January 2016.

HBM achieves higher bandwidth while using less power in a substantially smaller form factor than DDR4 or GDDR5. This is achieved by stacking up to eight DRAM dies, including an optional base die with a memory controller, which are interconnected by through-silicon vias (TSV) and microbumps. The HBM technology is similar in principle but incompatible with the Hybrid Memory Cube interface developed by Micron Technology.

HBM memory bus is very wide in comparison to other DRAM memories such as DDR4 or GDDR5. An HBM stack of four DRAM dies (4-Hi) has two 128-bit channels per die for a total of 8 channels and a width of 1024 bits in total. A graphics card/GPU with four 4-Hi HBM stacks would therefore have a memory bus with a width of 4096 bits. In comparison, the bus width of GDDR memories is 32 bits, with 16 channels for a graphics card with a 512-bit memory interface. HBM supports up to 4 GB per package.

The larger number of connections to the memory, relative to DDR4 or GDDR5, required a new method of connecting the HBM memory to the GPU (or other processor). AMD and Nvidia have both used purpose built silicon chips, called interposers, to connect the memory and GPU. This interposer has the added advantage of requiring the memory and processor to be physically close, decreasing memory paths. However, as semiconductor device fabrication is significantly more expensive than printed circuit board manufacture, this adds cost to the final product.


...
Wikipedia

...