*** Welcome to piglix ***

Grothendieck-Hirzebruch-Riemann-Roch theorem


In mathematics, specifically in algebraic geometry, the Grothendieck–Riemann–Roch theorem is a far-reaching result on coherent cohomology. It is a generalisation of the Hirzebruch–Riemann–Roch theorem, about complex manifolds, which is itself a generalisation of the classical Riemann–Roch theorem for line bundles on compact Riemann surfaces.

Riemann–Roch type theorems relate Euler characteristics of the cohomology of a vector bundle with their topological degrees, or more generally their characteristic classes in (co)homology or algebraic analogues thereof. The classical Riemann–Roch theorem does this for curves and line bundles, whereas the Hirzebruch–Riemann–Roch theorem generalises this to vector bundles over manifolds. The Grothendieck–Riemann–Roch theorem sets both theorems in a relative situation of a morphism between two manifolds (or more general schemes) and changes the theorem from a statement about a single bundle, to one applying to chain complexes of sheaves.

The theorem has been very influential, not least for the development of the Atiyah–Singer index theorem. Conversely, complex analytic analogues of the Grothendieck–Riemann–Roch theorem can be proved using the index theorem for families. Alexander Grothendieck gave a first proof in a 1957 manuscript, later published.Armand Borel and Jean-Pierre Serre wrote up and published Grothendieck's proof in 1958. Later, Grothendieck and his collaborators simplified and generalized the proof.


...
Wikipedia

...