Gravity gradiometry is the study and measurement of variations in the acceleration due to gravity. The gravity gradient is the spatial rate of change of gravitational acceleration.
Gravity gradiometry is used by oil and mineral prospectors to measure the density of the subsurface, effectively the rate of change of rock properties. From this information it is possible to build a picture of subsurface anomalies which can then be used to more accurately target oil, gas and mineral deposits. It is also used to image water column density, when locating submerged objects, or determining water depth (bathymetry). Physical scientists use gravimeters to determine the exact size and shape of the earth and they contribute to the gravity compensations applied to inertial navigation systems.
Gravity measurements are a reflection of the earth’s gravitational attraction, its centripetal force, tidal accelerations due to the sun, moon, and planets, and other applied forces. Gravity gradiometers measure the spatial derivatives of the gravity vector. The most frequently used and intuitive component is the vertical gravity gradient, Gzz, which represents the rate of change of vertical gravity (gz) with height (z). It can be deduced by differencing the value of gravity at two points separated by a small vertical distance, l, and dividing by this distance.
The two gravity measurements are provided by accelerometers which are matched and aligned to a high level of accuracy.
The unit of gravity gradient is the eotvos (abbreviated as E), which is equivalent to 10−9 s−2 (or 10−4 mGal/m). A person walking past at a distance of 2 metres would provide a gravity gradient signal approximately one E. Mountains can give signals of several hundred Eotvos.
Full tensor gradiometers measure the rate of change of the gravity vector in all three perpendicular directions giving rise to a gravity gradient tensor (Fig 1).
Being the derivatives of gravity, the spectral power of gravity gradient signals is pushed to higher frequencies. This generally makes the gravity gradient anomaly more localised to the source than the gravity anomaly. The table (below) and graph (Fig 2) compare the gz and Gzz responses from a point source.