Gopal Prasad | |
---|---|
Born |
Ghazipur, British India |
31 July 1945
Fields | Mathematics |
Institutions | University of Michigan |
Alma mater |
Patna University IITK TIFR Institute for Advanced Study |
Doctoral advisor | M. S. Raghunathan |
Doctoral students |
Arvind Nair Derek Kane Jahwan Kim Eugene Kushnirsky |
Notable awards |
Indian Academy of Sciences (1984), |
Indian Academy of Sciences (1984),
and Indian National Science Academy (1982)
Gopal Prasad (born 31 July 1945 in Ghazipur, India) is an Indian-American mathematician. His research interests span the fields of Lie groups, their discrete subgroups, algebraic groups, arithmetic groups, geometry of locally symmetric spaces, and representation theory of reductive p-adic groups.
He is the Raoul Bott Professor of Mathematics at the University of Michigan in Ann Arbor.
He earned his bachelor's degree with honors in Mathematics from Magadh University in 1963. Two years later, in 1965, he received his masters in Mathematics from Patna University. After a brief stay at the Indian Institute of Technology Kanpur in their Ph.D. program for Mathematics, Prasad joined TIFR for his PhD program in 1966. There Prasad began a long and extensive collaboration with his advisor M. S. Raghunathan on several topics including the study of lattices in semi-simple Lie groups. In 1976, Prasad received his Ph.D. from University of Mumbai. Prasad became an Associate Professor at TIFR in 1979, and a Professor in 1984. He left TIFR to join the faculty at the University of Michigan in Ann Arbor in 1992, where he is the Raoul Bott Professor of Mathematics.
In 1969, he married Indu Devi of Deoria. Gopal Prasad and Indu Devi have a son and a daughter.
Prasad's early work was on discrete subgroups of real and p-adic semi-simple groups. He proved the "strong rigidity" of lattices in real semi-simple groups of rank 1 and also of lattices in p-adic groups, see [1] and [2]. He then tackled group-theoretic and arithmetic questions on semi-simple algebraic groups. He proved the "strong approximation" property for simply connected semi-simple groups over global function fields [3]. In collaboration with M. S. Raghunathan, Prasad determined the topological central extensions of these groups, and computed the "metaplectic kernel" for isotropic groups, see [11], [12] and [10]. Later, together with Andrei Rapinchuk, Prasad gave a precise computation of the metaplectic kernel for all simply connected semi-simple groups, see [14]. Prasad and Raghunathan have also obtained results on the Kneser-Tits problem, [13].