*** Welcome to piglix ***

Gold(III) bromide

Gold(III) bromide
Ball-and-stick model of gold(III) bromide
Space-filling model of gold(III) bromide
Names
IUPAC name
Gold(III) bromide
Other names
Auric bromide
Gold bromide
Gold(III) bromide
Gold tribromide
Digold hexabromide
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.030.582
PubChem CID
UNII
Properties
AuBr3
Molar mass 436.69 g/mol
Appearance dark red to black crystalline
Melting point 97.5 °C (207.5 °F; 370.6 K)
Hazards
NFPA 704
Flammability (red): no hazard code Health code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gas Reactivity (yellow): no hazard code Special hazards (white): no codeNFPA 704 four-colored diamond
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Gold(III) bromide is a dark-red to black crystalline solid. It has the empirical formula AuBr3, but exists primarily as a dimer with the molecular formula Au2Br6 in which two gold atoms are bridged by two bromine atoms. It is commonly referred to as gold(III) bromide, gold tribromide, and rarely but traditionally auric bromide, and sometimes as digold hexabromide. As is similar with the other gold halides, this compound is unique for being a coordination complex of a group 11 transition metal that is stable in an oxidation state of three whereas copper or silver complexes persist in oxidation states of one or two.

The first mention of any research or study of the gold halides dates back to the early-to-mid-19th century, and there are three primary researchers associated with the extensive investigation of this particular area of chemistry: Thomsen, Schottländer, and Krüss.

The dimer, digold hexabromide, has structural properties similar to those of the other gold trihalide dimeric compounds, such as gold(III) chloride. The gold centers exhibit square planar coordination with bond angles of roughly 90 degrees.

Calculations indicate that in the hypothetical monomeric forms of the gold trihalides, the Jahn-Teller effect causes differences to arise in the structures of the gold halide complexes. For instance, gold(III) bromide contains one long and two short gold-bromine bonds whereas gold(III) chloride and gold(III) fluoride consist of two long and one short gold-halogen bonds. Moreover, gold tribromide does not exhibit the same coordination around the central gold atom as gold trichloride or gold trifluoride. In the latter complexes, the coordination exhibits a T-conformation, but in gold tribromide the coordination exists as more of a dynamic balance between a Y-conformation and a T-conformation. This coordination difference can be attributed to the Jahn-Teller effect but more so to the decrease in π-back bonding of the gold atoms with the bromine ligands compared to the π-back bonding found with fluorine and chlorine ligands. It is also this decrease in π-back bonding which explains why gold tribromide is less stable than its trifluoride and trichloride counterparts.


...
Wikipedia

...