The game of Go is one of the most popular games in the world. As a result of its elegant and simple rules, the game has long been an inspiration for mathematical research. Chinese scholars of the 11th century already published work on permutations based on the go board. In more recent years, research of the game by John H. Conway led to the invention of the surreal numbers and contributed to development of combinatorial game theory (with Go Infinitesimals being a specific example of its use in Go).
Generalized Go is played on n x n boards, and the computational complexity of determining the winner in a given position of generalized Go depends crucially on the ko rules.
Go is “almost” in PSPACE, since in normal play, moves are not reversible, and it is only through capture that there is the possibility of the repeating patterns necessary for a harder complexity.
Without ko, Go is PSPACE-hard. This is proved by reducing True Quantified Boolean Formula, which is known to be PSPACE-complete, to generalized geography, to planar generalized geography, to planar generalized geography with maximum degree 3, finally to Go positions.
Go with ko is not known to be in PSPACE. Though actual games seem never to last longer than moves, in general it's not known if there were a polynomial bound on the length of Go games. If there were, Go would be PSPACE-complete. As it currently stands, it might be PSPACE-complete, EXPTIME-complete, or even EXPSPACE-complete.