*** Welcome to piglix ***

Combinatorial game theory


Combinatorial game theory (CGT) is a branch of mathematics and theoretical computer science that typically studies sequential games with perfect information. Study has been largely confined to two-player games that have a position in which the players take turns changing in defined ways or moves to achieve a defined winning condition. CGT has not traditionally studied games of chance or those that use imperfect or incomplete information, favoring games that offer perfect information in which the state of the game and the set of available moves is always known by both players. However, as mathematical techniques advance, the types of game that can be mathematically analyzed expands, thus the boundaries of the field are ever changing. Scholars will generally define what they mean by a "game" at the beginning of a paper, and these definitions often vary as they are specific to the game being analyzed and are not meant to represent the entire scope of the field.

Combinatorial games include well-known games such as Chess, Checkers, and Go, which are categorized as non-trivial, and Tic-tac-toe, which is categorized as trivial in the sense of being "easy to solve". In CGT, the moves in these and other games are represented as a game tree.

Combinatorial games also include one-player combinatorial puzzles such as Sudoku, and no-player automata, such as Conway's Game of Life, (although in the strictest definition, "games" can be said to require more than one participant, thus the designations of "puzzle" and "automata".)

Game theory in general includes games of chance, games of imperfect knowledge, and games in which players can move simultaneously, and they tend to represent real-life decision making situations.

CGT has a different emphasis than "traditional" or "economic" game theory, which was initially developed to study games with simple combinatorial structure, but with elements of chance (although it also considers sequential moves, see extensive-form game). Essentially, CGT has contributed new methods for analyzing game trees, for example using surreal numbers, which are a subclass of all two-player perfect-information games. The type of games studied by CGT is also of interest in artificial intelligence, particularly for automated planning and scheduling. In CGT there has been less emphasis on refining practical search algorithms (such as the alpha–beta pruning heuristic included in most artificial intelligence textbooks), but more emphasis on descriptive theoretical results (such as measures of game complexity or proofs of optimal solution existence without necessarily specifying an algorithm, such as the strategy-stealing argument).


...
Wikipedia

...