Glyoxylate and dicarboxylate metabolism describes a variety of reactions involving glyoxylate or dicarboxylates. Glyoxylate is the conjugate base of glyoxylic acid, and within a buffered environment of known pH such as the cell cytoplasm these terms can be used almost interchangeably, as the gain or loss of a hydrogen ion is all that distinguishes them, and this can occur in the aqueous environment at any time. Likewise dicarboxylates are the conjugate bases of dicarboxylic acids, a general class of organic compounds containing two carboxylic acid groups, such as oxalic acid or succinic acid.
A compact graphical description of major biochemical reactions involved can be found at KEGG This provides information on the relevant enzymes and details the relationship with several other metabolic processes: glycine, serine, and threonine metabolism which provides hydroxypyruvate and glyoxylate, purine metabolism which provides glyoxylate, pyruvate metabolism which provides (S)-malate and formate, carbon fixation which consumes 3-phospho-D-glycerate and provides D-ribulose 1,5-P2, ascorbate and aldarate metabolism which shares tartronate-semialdehyde, nitrogen metabolism which shares formate, pyruvate metabolism and the citrate cycle which share oxaloacetate, and vitamin B6 metabolism which consumes glycolaldehyde.