Genomic imprinting is an epigenetic phenomenon that causes genes to be expressed in a manner specific to their parent of origin. Forms of genomic imprinting have been demonstrated in fungi, plants and animals. As of 2014, there are about 150 imprinted genes known in the mouse and about half that in humans.
Genomic imprinting is an inheritance process independent of the classical Mendelian inheritance. It is an epigenetic process that involves DNA methylation and histone methylation without altering the genetic sequence. These epigenetic marks are established ("imprinted") in the germline (sperm or egg cells) of the parents and are maintained through mitotic cell divisions in the somatic cells of an organism.
Appropriate imprinting of certain genes is important for normal development. Human diseases involving genomic imprinting include Angelman syndrome and Prader–Willi syndrome.
In diploid organisms (like humans), the somatic cells possess two copies of the genome, one inherited from the father and one from the mother. Each autosomal gene is therefore represented by two copies, or alleles, with one copy inherited from each parent at fertilization. For the vast majority of autosomal genes, expression occurs from both alleles simultaneously. In mammals, however, a small proportion (<1%) of genes are imprinted, meaning that gene expression occurs from only one allele (some recent studies have questioned this assertion, claiming that the number of regions of parent-of-origin methylation in, for example, the human genome, is much larger than previously thought). The expressed allele is dependent upon its parental origin. For example, the gene encoding insulin-like growth factor 2 (IGF2/Igf2) is only expressed from the allele inherited from the father.