In particle physics, a generation or family is a division of the elementary particles. Between generations, particles differ by their flavour quantum number and mass, but their interactions are identical.
There are three generations according to the Standard Model of particle physics. Each generation is divided into two types of leptons and two types of quarks. The two leptons may be classified into one with electric charge −1 (electron-like) and one neutral (neutrino); the two quarks may be classified into one with charge − 1⁄3 (down-type) and one with charge + 2⁄3 (up-type). The basic features of quark-lepton generation or families, such as their masses and mixings etc., can be described by some of family symmetries proposed.
Each member of a higher generation has greater mass than the corresponding particle of the previous generation, with the possible exception of the neutrinos (whose small but non-zero masses have not been accurately determined). For example, the first-generation electron has a mass of only MeV/c2, the second-generation 0.511 muon has a mass of , and the third-generation 106 MeV/c2tau has a mass of (almost twice as heavy as a 1777 MeV/c2proton). This mass hierarchy causes particles of higher generations to decay to the first generation, which explains why everyday matter (atoms) is made of particles from the first generation. Electrons surround a nucleus made of protons and neutrons, which contain up and down quarks. The second and third generations of charged particles do not occur in normal matter and are only seen in extremely high-energy environments such as cosmic rays or particle accelerators. The term generation was first introduced by Haim Harari in Les Houches Summer School, 1976.