General set theory (GST) is George Boolos's (1998) name for a fragment of the axiomatic set theory Z. GST is sufficient for all mathematics not requiring infinite sets, and is the weakest known set theory whose theorems include the Peano axioms.
The ontology of GST is identical to that of ZFC, and hence is thoroughly canonical. GST features a single primitive ontological notion, that of set, and a single ontological assumption, namely that all individuals in the universe of discourse (hence all mathematical objects) are sets. There is a single primitive binary relation, set membership; that set a is a member of set b is written a∈b (usually read "a is an element of b").
The symbolic axioms below are from Boolos (1998: 196), and govern how sets behave and interact. The natural language versions of the axioms are intended to aid the intuition. The background logic is first order logic with identity.
1) Axiom of Extensionality: The sets x and y are the same set if they have the same members.
The converse of this axiom follows from the substitution property of equality.
2) Axiom Schema of Specification (or Separation or Restricted Comprehension): If z is a set and is any property which may be satisfied by all, some, or no elements of z, then there exists a subset y of z containing just those elements x in z which satisfy the property . The restriction to z is necessary to avoid Russell's paradox and its variants. More formally, let be any formula in the language of GST in which x is free and y is not. Then all instances of the following schema are axioms: