*** Welcome to piglix ***

Zermelo set theory


Zermelo set theory, as set out in an important paper in 1908 by Ernst Zermelo, is the ancestor of modern set theory. It bears certain differences from its descendants, which are not always understood, and are frequently misquoted. This article sets out the original axioms, with the original text (translated into English) and original numbering.

Zermelo's axioms are stated for a model some (but not necessarily all) of whose objects are called sets, and the remaining objects are urelements and do not contain any elements. Zermelo's language implicitly includes a membership relation ∈, an equality relation = (if it is not included in the underlying logic), and a unary predicate saying whether an object is a set. Later versions of set theory often assume that all objects are sets so there are no urelements and there is no need for the unary predicate.

The most widely used and accepted set theory is known as ZFC, which consists of Zermelo–Fraenkel set theory with the addition of the axiom of choice. The links show where the axioms of Zermelo's theory correspond. There is no exact match for "elementary sets". (It was later shown that the singleton set could be derived from what is now called "Axiom of pairs". If a exists, a and a exist, thus {a,a} exists. By extensionality {a,a} = {a}.) The empty set axiom is already assumed by axiom of infinity, and is now included as part of it.

The axioms do not include the Axiom of regularity and Axiom of replacement. These were added as the result of work by Thoralf Skolem in 1922, based on earlier work by Abraham Fraenkel in the same year.

In the modern ZFC system, the "propositional function" referred to in the axiom of separation is interpreted as "any property definable by a first order formula with parameters", so the separation axiom is replaced by an axiom scheme. The notion of "first order formula" was not known in 1904 when Zermelo published his axiom system, and he later rejected this interpretation as being too restrictive. Zermelo set theory is usually taken to be a first-order theory with the separation axiom replaced by an axiom scheme with an axiom for each first-order formula. It can also be considered as a theory in second-order logic, where now the separation axiom is just a single axiom. The second-order interpretation of Zermelo set theory is probably closer to Zermelo's own conception of it, and is stronger than the first-order interpretation.


...
Wikipedia

...