Group-like structures | |||||
---|---|---|---|---|---|
Totality | Associativity | Identity | Invertibility | Commutativity | |
Semigroupoid | Unneeded | Required | Unneeded | Unneeded | Unneeded |
Category | Unneeded | Required | Required | Unneeded | Unneeded |
Groupoid | Unneeded | Required | Required | Required | Unneeded |
Magma | Required | Unneeded | Unneeded | Unneeded | Unneeded |
Quasigroup | Required | Unneeded | Unneeded | Required | Unneeded |
Loop | Required | Unneeded | Required | Required | Unneeded |
Semigroup | Required | Required | Unneeded | Unneeded | Unneeded |
Monoid | Required | Required | Required | Unneeded | Unneeded |
Group | Required | Required | Required | Required | Unneeded |
Abelian group | Required | Required | Required | Required | Required |
^α Closure, which is used in many sources, is an equivalent axiom to totality, though defined differently. |
In abstract algebra, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, these are the groups that obey the axiom of commutativity. Abelian groups generalize the arithmetic of addition of integers. They are named after early 19th century mathematician Niels Henrik Abel.
The concept of an abelian group is one of the first concepts encountered in undergraduate abstract algebra, from which many other basic concepts, such as modules and vector spaces, are developed. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood. On the other hand, the theory of infinite abelian groups is an area of current research.
An abelian group is a set, A, together with an operation • that combines any two elements a and b to form another element denoted a • b. The symbol • is a general placeholder for a concretely given operation. To qualify as an abelian group, the set and operation, (A, •), must satisfy five requirements known as the abelian group axioms:
A group in which the group operation is not commutative is called a "non-abelian group" or "non-commutative group".
There are two main notational conventions for abelian groups – additive and multiplicative.
Generally, the multiplicative notation is the usual notation for groups, while the additive notation is the usual notation for modules and rings. The additive notation may also be used to emphasize that a particular group is abelian, whenever both abelian and non-abelian groups are considered, some notable exceptions being near-rings and partially ordered groups, where an operation is written additively even when non-abelian.