*** Welcome to piglix ***

Fructose-bisphosphate aldolase

Fructose-bisphosphate aldolase
Identifiers
EC number 4.1.2.13
CAS number 9024-52-6
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO
Fructose-bisphosphate aldolase class-I
PDB 1fdj EBI.jpg
fructose 1,6-bisphosphate aldolase from rabbit liver
Identifiers
Symbol Glycolytic
Pfam PF00274
InterPro IPR000741
PROSITE PDOC00143
SCOP 1ald
SUPERFAMILY 1ald
CDD cd00344
Fructose-bisphosphate aldolase class-II
PDB 1b57 EBI.jpg
class II fructose-1,6-bisphosphate aldolase in complex with phosphoglycolohydroxamate
Identifiers
Symbol F_bP_aldolase
Pfam PF01116
Pfam clan CL0036
InterPro IPR000771
PROSITE PDOC00523
SCOP 1dos
SUPERFAMILY 1dos
CDD cd00453

Fructose-bisphosphate aldolase (EC 4.1.2.13), often just aldolase, is an enzyme catalyzing a reversible reaction that splits the aldol, fructose 1,6-bisphosphate, into the triose phosphates dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (G3P). Aldolase can also produce DHAP from other (3S,4R)-ketose 1-phosphates such as fructose 1-phosphate and sedoheptulose 1,7-bisphosphate. Gluconeogenesis and the Calvin cycle, which are anabolic pathways, use the reverse reaction. Glycolysis, a catabolic pathway, uses the forward reaction. Aldolase is divided into two classes by mechanism.

The word aldolase also refers, more generally, to an enzyme that performs an aldol reaction (creating an aldol) or its reverse (cleaving an aldol), such as the one that forms sialic acid.

Class I proteins form a protonated Schiff base intermediate linking a highly conserved active site lysine with the DHAP carbonyl carbon. Additionally, tyrosine residues are crucial to this mechanism in acting as stabilizing hydrogen acceptors. Class II proteins use a different mechanism which polarizes the carbonyl group with a divalent cation like Zn2+. The Escherichia coli galactitol operon protein, gatY, and N-acetyl galactosamine operon protein, agaY, which are tagatose-bisphosphate aldolase, are homologs of class II fructose-bisphosphate aldolase. Two histidine residues in the first half of the sequence of these homologs have been shown to be involved in binding zinc.


...
Wikipedia

...