*** Welcome to piglix ***

Freezing-point depression


Freezing-point depression is the process in which adding a solute to a solvent decreases the freezing point of the solvent. Examples include salt in water, alcohol in water, or the mixing of two solids such as impurities in a finely powdered drug. In the last case, the added compound is the solute, and the original solid is thought of as the solvent. The resulting solution or solid-solid mixture has a lower freezing point than the pure solvent or solid. This phenomenon is what causes sea water, (a mixture of salt [and other things] in water) to remain liquid at temperatures below 0 °C (32 °F), the freezing point of pure water.

The phenomenon of freezing-point depression has many practical uses. The radiator fluid in an automobile is a mixture of water and ethylene glycol. As a result of freezing-point depression, radiators do not freeze in winter (unless it is extremely cold, e.g. −30 to −40 °C (−22 to −40 °F)). Road salting takes advantage of this effect to lower the freezing point of the ice it is placed on. Lowering the freezing point allows the street ice to melt at lower temperatures, preventing the accumulation of dangerous, slippery ice. Commonly used sodium chloride can depress the freezing point of water to about −21 °C (−6 °F). If the road surface temperature is lower NaCl becomes ineffective and other salts are used, such as calcium chloride, magnesium chloride or a mixture of many. These salts are somewhat aggressive to metals, especially iron, so in airports safer media such as sodium formate, potassium formate, sodium acetate, potassium acetate are used instead.

Freezing-point depression is used by some organisms that live in extreme cold. Such creatures have evolved means through which they can produce high concentration of various compounds such as sorbitol and glycerol. This elevated concentration of solute decreases the freezing point of the water inside them, preventing the organism from freezing solid even as the water around them freezes, or as the air around them becomes very cold. Examples of organisms that produce antifreeze compounds include some species of arctic-living fish such as the rainbow smelt, which produces glycerol and other molecules to survive in frozen-over estuaries during the winter months. In other animals, such as the spring peeper frog (Pseudacris crucifer), the molality is increased temporarily as a reaction to cold temperatures. In the case of the peeper frog, freezing temperatures trigger a large scale breakdown of glycogen in the frog's liver and subsequent release of massive amounts of glucose into the blood.


...
Wikipedia

...