In organic chemistry, free-radical halogenation is a type of halogenation. This chemical reaction is typical of alkanes and alkyl-substituted aromatics under application of UV light. The reaction is used for the industrial synthesis of chloroform (CHCl3), dichloromethane (CH2Cl2), and hexachlorobutadiene. It proceeds by a free-radical chain mechanism.
The chain mechanism is as follows, using the chlorination of methane as a typical example:
The net reaction is:
In the case of methane or ethane, all the hydrogen atoms are equivalent and thus have an equal chance of being replaced. This leads to what is known as a statistical product distribution. For propane and higher alkanes, the hydrogen atoms which form part of CH2 (or CH) groups are preferentially replaced.
The reactivity of the different halogens varies considerably. The relative rates are: fluorine (108) > chlorine (1) > bromine (7 × 10−11) > iodine (2 × 10−22). Hence the reaction of alkanes with fluorine is difficult to control, that with chlorine is moderate to fast, that with bromine is slow and requires high levels of UV irradiation while the reaction with iodine is practically nonexistent and thermodynamically unfavorable.