Free-radical polymerization is a method of polymerization by which a polymer forms by the successive addition of free-radical building blocks. Free radicals can be formed by a number of different mechanisms, usually involving separate initiator molecules. Following its generation, the initiating free radical adds (nonradical) monomer units, thereby growing the polymer chain.
Free-radical polymerization is a key synthesis route for obtaining a wide variety of different polymers and material composites. The relatively non-specific nature of free-radical chemical interactions makes this one of the most versatile forms of polymerization available and allows facile reactions of polymeric free-radical chain ends and other chemicals or substrates. In 2001, 40 billion of the 110 billion pounds of polymers produced in the United States were produced by free-radical polymerization.
Free-radical polymerization is a type of chain-growth polymerization, along with anionic, cationic and coordination polymerization.
A chain polymerization in which the kinetic-chain carriers are radicals.
Note: Usually, the growing chain end bears an unpaired electron.
Initiation is the first step of the polymerization process. During initiation, an active center is created from which a polymer chain is generated. Not all monomers are susceptible to all types of initiators. Radical initiation works best on the carbon–carbon double bond of vinyl monomers and the carbon–oxygen double bond in aldehydes and ketones. Initiation has two steps. In the first step, one or two radicals are created from the initiating molecules. In the second step, radicals are transferred from the initiator molecules to the monomer units present. Several choices are available for these initiators.
Due to side reactions and inefficient synthesis of the radical species, chain initiation is not 100%. The efficiency factor f is used to describe the effective radical concentration. The maximal value of f is 1, but typical values range from 0.3 to 0.8. The following is a list of reactions that decrease the efficiency of the initiator.