*** Welcome to piglix ***

Cationic polymerization


Cationic polymerization is a type of chain growth polymerization in which a cationic initiator transfers charge to a monomer which then becomes reactive. This reactive monomer goes on to react similarly with other monomers to form a polymer. The types of monomers necessary for cationic polymerization are limited to olefins with electron-donating substituents and heterocycles. Similar to anionic polymerization reactions, cationic polymerization reactions are very sensitive to the type of solvent used. Specifically, the ability of a solvent to form free ions will dictate the reactivity of the propagating cationic chain. Cationic polymerization is used in the production of polyisobutylene (used in inner tubes) and poly(N-vinylcarbazole) (PVK).

Monomer scope for cationic polymerization is limited to two main types: olefins and heterocyclic monomers. Cationic polymerization of both types of monomers occurs only if the overall reaction is thermally favorable. In the case of olefins, this is due to isomerization of the monomer double bond; for heterocycles, this is due to release of monomer ring strain and, in some cases, isomerization of repeating units. Monomers for cationic polymerization are nucleophilic and form a stable cation upon polymerization.

Cationic polymerization of olefin monomers occurs with olefins that contain electron-donating substituents. These electron-donating groups make the olefin nucleophilic enough to attack electrophilic initiators or growing polymer chains. At the same time, these electron-donating groups attached to the monomer must be able to stabilize the resulting cationic charge for further polymerization. Some reactive olefin monomers are shown below in order of decreasing reactivity, with heteroatom groups being more reactive than alkyl or aryl groups. Note, however, that the reactivity of the carbenium ion formed is the opposite of the monomer reactivity.


...
Wikipedia

...