*** Welcome to piglix ***

Fred Gage

Dr. Fred Gage
Born October 8, 1950 (1950-10-08) (age 66)
Fields Brain Research
Institutions Salk Institute for Biological Studies
Alma mater University of Florida
Johns Hopkins University
Known for Stem Cell research
Notable awards Christopher Reeve Research Medal
Max Planck Research Prize
National Academy of Sciences

Fred "Rusty" Gage (born October 8, 1950) is Adler Professor in the Laboratory of Genetics at the Salk Institute, and has concentrated on the adult central nervous system and the unexpected plasticity and adaptability that remains throughout the life of all mammals. His work may lead to methods of replacing brain tissue lost to stroke or Alzheimer's disease and repairing spinal cords damaged by trauma. He was the President-elect of the ISSCR in 2012.

In 1998, Fred H. Gage (Salk Institute for Biological Studies, La Jolla, California) and Peter Eriksson (Sahlgrenska University Hospital, Gothenburg, Sweden) discovered and announced that the human brain produces new nerve cells in adulthood. Until then, it had been assumed that humans are born with all the brain cells they will ever have.

Gage’s lab showed that, contrary to years of dogma, human beings are capable of growing new nerve cells throughout life. Small populations of immature nerve cells are found in the adult mammalian brain, and Gage is working to understand how these cells can be induced to become mature nerve cells. His team is investigating how such cells can be transplanted back to the brain and spinal cord. They have showed that physical exercise can enhance the growth of new brain cells in the hippocampus, a brain structure that is important for the formation of new memories. Furthermore, his team is examining the underlying molecular mechanisms that are critical to the birth of new brain cells, work that may lead to new therapeutics for neurodegenerative conditions.

His lab studies the genomic mosaicism that exists in the brain as a result of “jumping genes,” mobile elements, and DNA damage that occurs during development. Specifically, he is interested in how this mosaicism may lead to difference in brain function between individuals. In December 2015 his lab published an important paper showing that Human induced pluripotent stem cells (hiPSCs) erase aging signatures and hiPSC-derived neurons remain rejuvenated, while direct conversion into induced neurons (iNs) preserve donor age-dependent transcriptomic signatures.


...
Wikipedia

...