Fréchet distribution
Fréchet
Probability density function
|
Cumulative distribution function
|
Parameters |
shape.
(Optionally, two more parameters)
scale (default: )
location of minimum (default: ) |
Support |
 |
PDF |
 |
CDF |
 |
Mean |
 |
Median |
![m+{\frac {s}{{\sqrt[ {\alpha }]{\log _{e}(2)}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/31a72ce4ea6fe77d9c68731c0cafb36bf93dca71) |
Mode |
 |
Variance |
 |
Skewness |
 |
Ex. kurtosis |
![{\begin{cases}\ -6+{\frac {\Gamma \left(1-{\frac {4}{\alpha }}\right)-4\Gamma \left(1-{\frac {3}{\alpha }}\right)\Gamma \left(1-{\frac {1}{\alpha }}\right)+3\Gamma ^{2}\left(1-{\frac {2}{\alpha }}\right)}{\left[\Gamma \left(1-{\frac {2}{\alpha }}\right)-\Gamma ^{2}\left(1-{\frac {1}{\alpha }}\right)\right]^{2}}}&{\text{for }}\alpha >4\\\ \infty &{\text{otherwise}}\end{cases}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1f0e101297df7d5cbc11a6a96d305a162371856d) |
Entropy |
, where is the Euler–Mascheroni constant. |
MGF |
Note: Moment exists if
|
CF |
|
The Fréchet distribution, also known as inverse Weibull distribution, is a special case of the generalized extreme value distribution. It has the cumulative distribution function
where α > 0 is a shape parameter. It can be generalised to include a location parameter m (the minimum) and a scale parameter s > 0 with the cumulative distribution function
Named for Maurice Fréchet who wrote a related paper in 1927, further work was done by Fisher and Tippett in 1928 and by Gumbel in 1958.
The single parameter Fréchet with parameter
has standardized moment
(with
) defined only for
:
...
Wikipedia