Forecast Skill (or skill score,forecast skill, prediction skill) within the fields of forecasting and prediction is a generic term referring to the accuracy and/or degree of association of prediction to an observation or estimate of the actual value of what is being predicted (formally, the predictand).
In meteorology, forecast skill in weather forecasting, a motivating application, measures the superiority of a forecast over a simple historical baseline of past observations. The same forecast methodology can result in different skill measurements at different places, or even in the same place for different seasons (e.g. spring weather might be driven by erratic local conditions, whereas winter cold snaps might correlate with observable polar winds). Forecast skill is often presented in the form of seasonal geographical maps.
Forecast skill for single-value forecasts is commonly represented in terms of metrics such as correlation, root mean squared error, mean absolute error, relative mean absolute error, bias, and the Brier score, among others.
The term 'forecast skill' can be used both quantitatively and qualitatively. In the former case, skill could be equal to a statistic describing forecast performance, such as the correlation of the forecast with observations. In the latter case, it could either refer to forecast performance according to a single metric or to the overall forecast performance based on multiple metrics.
Probabilistic forecast skill scores may use metrics such as the Ranked Probabilistic Skill Score (RPSS) or the Continuous RPSS (CRPSS), among others. Categorical skill metrics such as the False Alarm Ratio (FAR), the Probability of Detection (POD), the Critical Success Index (CSI), and Equitable Threat Score (ETC) are also relevant for some forecasting applications. Skill is often, but not exclusively, expressed as the relative representation that compares the forecast performance of a particular forecast prediction to that of a reference, benchmark prediction—a formulation called a 'Skill Score'.