Fingerprint recognition or fingerprint authentication refers to the automated method of verifying a match between two human fingerprints. Fingerprints are one of many forms of biometrics used to identify individuals and verify their identity.
The analysis of fingerprints for matching purposes generally requires the comparison of several features of the print pattern. These include patterns, which are aggregate characteristics of ridges, and minutia points, which are unique features found within the patterns. It is also necessary to know the structure and properties of human skin in order to successfully employ some of the imaging technologies.
The three basic patterns of fingerprint ridges are the arch, loop, and whorl:
Scientists have found that family members often share the same general fingerprint patterns, leading to the belief that these patterns are inherited.
Fingerprint processing has three primary functions: enrollment, searching and verification. Among these functions, enrollment which captures fingerprint image from the sensor plays an important role. A reason is that the way people put their fingerprints on a mirror to scan can affect to the result in the searching and verifying process. Regarding to verification function, there are several techniques to match fingerprints such as correlation-based matching, minutiae-based matching, ridge feature-based matching and minutiae-based algorithm. However, the most popular algorithm was minutiae based matching algorithm due to its efficiency and accuracy
The major minutia features of fingerprint ridges are ridge ending, bifurcation, and short ridge (or dot). The ridge ending is the point at which a ridge terminates. Bifurcations are points at which a single ridge splits into two ridges. Short ridges (or dots) are ridges which are significantly shorter than the average ridge length on the fingerprint. Minutiae and patterns are very important in the analysis of fingerprints since no two fingers have been shown to be identical.
A fingerprint sensor is an electronic device used to capture a digital image of the fingerprint pattern. The captured image is called a live scan. This live scan is digitally processed to create a biometric template (a collection of extracted features) which is stored and used for matching. Many technologies have been used including optical, capacitive, RF, thermal, piezoresistive, ultrasonic, piezoelectric, MEMS. This is an overview of some of the more commonly used fingerprint sensor technologies.