*** Welcome to piglix ***

Field of definition


In mathematics, the field of definition of an algebraic variety V is essentially the smallest field to which the coefficients of the polynomials defining V can belong. Given polynomials, with coefficients in a field K, it may not be obvious whether there is a smaller field k, and other polynomials defined over k, which still define V.

The issue of field of definition is of concern in diophantine geometry.

Throughout this article, k denotes a field. The algebraic closure of a field is denoted by adding a superscript of "alg", e.g. the algebraic closure of k is kalg. The symbols Q, R, C, and Fp represent, respectively, the field of rational numbers, the field of real numbers, the field of complex numbers, and the finite field containing p elements. Affine n-space over a field F is denoted by An(F).

Results and definitions stated below, for affine varieties, can be translated to projective varieties, by replacing An(kalg) with projective space of dimension n − 1 over kalg, and by insisting that all polynomials be homogeneous.

A k-algebraic set is the zero-locus in An(kalg) of a subset of the polynomial ring k[x1, …, xn]. A k-variety is a k-algebraic set that is irreducible, i.e. is not the union of two strictly smaller k-algebraic sets. A k-morphism is a regular function between k-algebraic sets whose defining polynomials' coefficients belong to k.


...
Wikipedia

...