ferredoxin—nitrite reductase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC number | 1.7.7.1 | ||||||||
CAS number | 37256-44-3 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
Gene Ontology | AmiGO / QuickGO | ||||||||
|
Search | |
---|---|
PMC | articles |
PubMed | articles |
NCBI | proteins |
In enzymology, a ferredoxin—nitrite reductase (EC 1.7.7.1) is an enzyme that catalyzes the chemical reaction
The 3 substrates of this enzyme are NH3, H2O, and oxidized ferredoxin, whereas its 3 products are nitrite, reduced ferredoxin, and H+.
This enzyme belongs to the family of oxidoreductases, specifically those acting on other nitrogenous compounds as donors with an iron-sulfur protein as acceptor. The systematic name of this enzyme class is ammonia:ferredoxin oxidoreductase. This enzyme participates in nitrogen metabolism and nitrogen assimilation. It has 3 cofactors: iron, Siroheme, and Iron-sulfur.
This enzyme can use many different isoforms of ferredoxin. In photosynthesizing tissues, it uses ferredoxin that is reduced by PSI and in the root it uses a form of ferredoxin (FdIII) that has a less negative midpoint potential and can be reduced easily by NADPH.
As of late 2007, 3 structures have been solved for this class of enzymes, with PDB accession codes 1ZJ8, 1ZJ9, and 2AKJ.