Mode-locking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10−12 s) or femtoseconds (10−15 s).
The basis of the technique is to induce a fixed-phase relationship between the longitudinal modes of the laser's resonant cavity. The laser is then said to be 'phase-locked' or 'mode-locked'. Interference between these modes causes the laser light to be produced as a train of pulses. Depending on the properties of the laser, these pulses may be of extremely brief duration, as short as a few femtoseconds.
Although laser light is perhaps the purest form of light, it is not of a single, pure frequency or wavelength. All lasers produce light over some natural bandwidth or range of frequencies. A laser's bandwidth of operation is determined primarily by the gain medium from which the laser is constructed, and the range of frequencies over which a laser may operate is known as the gain bandwidth. For example, a typical helium–neon laser has a gain bandwidth of about 1.5 GHz (a wavelength range of about 0.002 nm at a central wavelength of 633 nm), whereas a titanium-doped sapphire (Ti:sapphire) solid-state laser has a bandwidth of about 128 THz (a 300-nm wavelength range centered at 800 nm).
The second factor to determine a laser's emission frequencies is the optical cavity (or resonant cavity) of the laser. In the simplest case, this consists of two plane (flat) mirrors facing each other, surrounding the gain medium of the laser (this arrangement is known as a Fabry–Pérot cavity). Since light is a wave, when bouncing between the mirrors of the cavity, the light will constructively and destructively interfere with itself, leading to the formation of standing waves or modes between the mirrors. These standing waves form a discrete set of frequencies, known as the longitudinal modes of the cavity. These modes are the only frequencies of light which are self-regenerating and allowed to oscillate by the resonant cavity; all other frequencies of light are suppressed by destructive interference. For a simple plane-mirror cavity, the allowed modes are those for which the separation distance of the mirrors L is an exact multiple of half the wavelength of the light λ, such that L = qλ/2, where q is an integer known as the mode order.