Fanno flow refers to adiabatic flow through a constant area duct where the effect of friction is considered.Compressibility effects often come into consideration, although the Fanno flow model certainly also applies to incompressible flow. For this model, the duct area remains constant, the flow is assumed to be steady and one-dimensional, and no mass is added within the duct. The Fanno flow model is considered an irreversible process due to viscous effects. The viscous friction causes the flow properties to change along the duct. The frictional effect is modeled as a shear stress at the wall acting on the fluid with uniform properties over any cross section of the duct.
For a flow with an upstream Mach number greater than 1.0 in a sufficiently long enough duct, deceleration occurs and the flow can become choked. On the other hand, for a flow with an upstream Mach number less than 1.0, acceleration occurs and the flow can become choked in a sufficiently long duct. It can be shown that for flow of calorically perfect gas the maximum entropy occurs at M = 1.0. Fanno flow is named after Gino Girolamo Fanno.
The Fanno flow model begins with a differential equation that relates the change in Mach number with respect to the length of the duct, dM/dx. Other terms in the differential equation are the heat capacity ratio, γ, the Fanning friction factor, f, and the hydraulic diameter, Dh:
Assuming the Fanning friction factor is a constant along the duct wall, the differential equation can be solved easily. One must keep in mind, however, that the value of the Fanning friction factor can be difficult to determine for supersonic and especially hypersonic flow velocities. The resulting relation is shown below where L* is the required duct length to choke the flow assuming the upstream Mach number is supersonic. The left-hand side is often called the Fanno parameter.