*** Welcome to piglix ***

Facility for Antiproton and Ion Research

Facility for Antiproton and Ion Research (FAIR)
FAIR Facility for Antiproton and Ion Research official logo.jpg
FAIR members map.svg
Abbreviation FAIR
Formation 2010
Location
Scientific Managing Director
Paolo Giubellino
Administrative Managing Director
Ursula Weyrich
Technical Managing Director
Jörg Blaurock
Website fair-center.eu

The Facility for Antiproton and Ion Research (FAIR) is an international accelerator facility under construction which will use antiprotons and ions to perform research in the fields of: nuclear, hadron and particle physics, atomic and anti-matter physics, high density plasma physics, and applications in condensed matter physics, biology and the bio-medical sciences. It is situated in Darmstadt in Germany and is expected to provide beams to the experiments from 2018 onwards.

FAIR will be based upon an expansion of the GSI Helmholtz Centre for Heavy Ion Research, the details of which have been laid out in the FAIR Baseline Technical Report 2006. On October 4, 2010 the Facility for Antiproton and Ion Research in Europe limited liability company (German GmbH), abbreviated as FAIR GmbH, was founded which coordinates the construction of the new accelerators and experiments.

The project's cost was estimated at 1.6-billion-euro ($2 billion).

The four scientific pillars of FAIR are:

Those are described on the web pages of FAIR (see and links therein).

Beams of protons will be prepared in the proton linear accelerator, p-LINAC, while heavy ions will be prepared in the UNILAC. Both of them will be fed into the SIS18. From there they will be directed into SIS100 (and SIS300 if applicable). Protons will be used either to produce antiproton beams by directing them on a dedicated production target or directly used for experiments within APPA. These antiprotons will be captured and cooled in the Collector Ring, CR (and RESR when available) before being injected into HESR, where they will be utilised within the PANDA experiment. High energetic heavy ions will either be used directly for studies with the CBM or APPA experiments or to produce unstable ion beams. The latter will be produced in the Rare Isotope Production Target and filtered the Super-FRS, where the NUSTAR experiments will take place.


...
Wikipedia

...