In mathematics, the affinely extended real number system is obtained from the real number system ℝ by adding two elements: + ∞ and – ∞ (read as positive infinity and negative infinity respectively). These new elements are not real numbers. It is useful in describing various limiting behaviors in calculus and mathematical analysis, especially in the theory of measure and integration. The affinely extended real number system is denoted or [–∞, +∞] or ℝ ∪ {–∞, +∞}.
When the meaning is clear from context, the symbol +∞ is often written simply as ∞.
We often wish to describe the behavior of a function , as either the argument or the function value gets "very big" in some sense. For example, consider the function