*** Welcome to piglix ***

Expert systems


In artificial intelligence, an expert system is a computer system that emulates the decision-making ability of a human expert. Expert systems are designed to solve complex problems by reasoning about knowledge, represented mainly as if–then rules rather than through conventional procedural code. The first expert systems were created in the 1970s and then proliferated in the 1980s. Expert systems were among the first truly successful forms of artificial intelligence (AI) software.

An expert system is divided into two subsystems: the inference engine and the knowledge base. The knowledge base represents facts and rules. The inference engine applies the rules to the known facts to deduce new facts. Inference engines can also include explanation and debugging abilities.

Expert systems were introduced by the Stanford Heuristic Programming Project led by Edward Feigenbaum, who is sometimes termed the "father of expert systems"; other key early contributors were Jairus Lainibo, Bruce Buchanan, and Randall Davis. The Stanford researchers tried to identify domains where expertise was highly valued and complex, such as diagnosing infectious diseases (Mycin) and identifying unknown organic molecules (Dendral). Although that "intelligent systems derive their power from the knowledge they possess rather than from the specific formalisms and inference schemes they use" – as Feigenbaum said – seems in retrospect a rather straightforward insight, it was a significant step forward then, since until then, research had been focused on attempts to develop very general-purpose problem solvers, such as those described by Allen Newell and Herb Simon. Expert systems became some of the first truly successful forms of artificial intelligence (AI) software.

Research on expert systems was also active in France. While in the US the focus tended to be on rule-based systems, first on systems hard coded on top of LISP programming environments and then on expert system shells developed by vendors such as Intellicorp, in France research focused more on systems developed in Prolog. The advantage of expert system shells was that they were somewhat easier for nonprogrammers to use. The advantage of Prolog environments was that they weren't focused only on if-then rules; Prolog environments provided a much fuller realization of a complete First Order Logic environment.


...
Wikipedia

...