MYCIN was an early backward chaining expert system that used artificial intelligence to identify bacteria causing severe infections, such as bacteremia and meningitis, and to recommend antibiotics, with the dosage adjusted for patient's body weight — the name derived from the antibiotics themselves, as many antibiotics have the suffix "-mycin". The Mycin system was also used for the diagnosis of blood clotting diseases. MYCIN was developed over five or six years in the early 1970s at Stanford University. It was written in Lisp as the doctoral dissertation of Edward Shortliffe under the direction of Bruce G. Buchanan, Stanley N. Cohen and others. It arose in the laboratory that had created the earlier Dendral expert system.
MYCIN was never actually used in practice but research indicated that it proposed an acceptable therapy in about 69% of cases, which was better than the performance of infectious disease experts who were judged using the same criteria.
MYCIN operated using fairly simple inference engine, and a knowledge base of ~600 rules. It would query the physician running the program via a long series of simple yes/no or textual questions. At the end, it provided a list of possible culprit bacteria ranked from high to low based on the probability of each diagnosis, its confidence in each diagnosis' probability, the reasoning behind each diagnosis (that is, MYCIN would also list the questions and rules which led it to rank a diagnosis a particular way), and its recommended course of drug treatment.
Despite MYCIN's success, it sparked debate about the use of its ad hoc, but principled, uncertainty framework known as "certainty factors". The developers performed studies showing that MYCIN's performance was minimally affected by perturbations in the uncertainty metrics associated with individual rules, suggesting that the power in the system was related more to its knowledge representation and reasoning scheme than to the details of its numerical uncertainty model. Some observers felt that it should have been possible to use classical Bayesian statistics. MYCIN's developers argued that this would require either unrealistic assumptions of probabilistic independence, or require the experts to provide estimates for an unfeasibly large number of conditional probabilities.