Expansin refers to a family of closely related nonenzymatic proteins found in the plant cell wall, with important roles in plant cell growth, fruit softening, abscission, emergence of root hairs, pollen tube invasion of the stigma and style, meristem function, and other developmental processes where cell wall loosening occurs. Expansins were originally discovered as mediators of acid growth, which refers to the widespread characteristic of growing plant cell walls to expand faster at low (acidic) pH than at neutral pH. Expansins are thus linked to auxin action. They are also linked to cell enlargement and cell wall changes induced by other plant hormones such as gibberellin,cytokinin,ethylene and brassinosteroids.
A subset of the β-expansins are also the major group-1 allergens of grass pollens.
So far, two large families of expansin genes have been discovered in plants, named alpha-expansins (given the gene symbol EXPA) and beta-expansins (EXPB). Both families of expansins have been identified in a wide range of land plants, from angiosperms and gymnosperms to ferns and mosses. The model plant Arabidopsis thaliana contains around 26 different α-expansin genes and 6 β-expansin genes. A subset of β-expansins has evolved a special role in grass pollen, where they are known as group 1 grass pollen allergens. Plants also have a small set of expansin-like genes (named EXLA and EXLB) whose function has not been established. Some proteins in bacteria and fungi are known to have distant sequence similarity to plant expansins. Strong evidence that at least some of these sequences are indeed expansins came in 2008 when the crystal structure of the YOAJ protein from a bacterium (Bacillus subtilis) was shown to be very similar to the structure of plant expansins, despite the low sequence similarity. This study also noted that proteins related to YOAJ were found in diverse species of plant pathogenic bacteria, but not in related bacteria that did not attack or colonize plants, thus suggesting that these bacterial expansins have a role in plant-microbe interactions. Some animals can too produce a functional expansin, such as , a plant-parasitic nematode, which uses it to loosen cell walls when invading its host plant.