Exoplanetology, or exoplanetary science, is an integrated field of astronomical science dedicated to the search and study of exoplanets (extrasolar planets). It employs an interdisciplinary approach which includes astrobiology, astrophysics, astronomy, astrochemistry, astrogeology, geochemistry, and planetary science.
The exoplanet naming convention is an extension of the system used for naming multiple-star systems as adopted by the International Astronomical Union (IAU). For exoplanets orbiting a single star, the name is normally formed by taking the name of its parent star and adding a lower case letter. The first planet discovered in a system is given the designation "b" (the parent star is considered to be "a") and later planets are given subsequent letters. If several planets in the same system are discovered at the same time, the closest one to the star gets the next letter, followed by the other planets in order of orbit size. A provisional IAU-sanctioned standard exists to accommodate the naming of circumbinary planets. A limited number of exoplanets have IAU-sanctioned proper names. Other naming systems exist.
The IAU's working definition is not always used. One alternate suggestion is that planets should be distinguished from brown dwarfs on the basis of formation. It is widely thought that giant planets form through core accretion, which may sometimes produce planets with masses above the deuterium fusion threshold; massive planets of that sort may have already been observed. Brown dwarfs form like stars from the direct collapse of clouds of gas and this formation mechanism also produces objects that are below the 13 MJup limit and can be as low as 1 MJup. Objects in this mass range that orbit their stars with wide separations of hundreds or thousands of AU and have large star/object mass ratios likely formed as brown dwarfs; their atmospheres would likely have a composition more similar to their host star than accretion-formed planets which would contain increased abundances of heavier elements. Most directly imaged planets as of April 2014 are massive and have wide orbits so probably represent the low-mass end of brown dwarf formation.