*** Welcome to piglix ***

Ewald's sphere


The Ewald sphere is a geometric construct used in electron, neutron, and X-ray crystallography which demonstrates the relationship between:

It was conceived by Paul Peter Ewald, a German physicist and crystallographer. Ewald himself spoke of the sphere of reflection.

Ewald's sphere can be used to find the maximum resolution available for a given x-ray wavelength and the unit cell dimensions. It is often simplified to the two-dimensional "Ewald's circle" model or may be referred to as the Ewald sphere.

A crystal can be described as a lattice of points of equal symmetry. The requirement for constructive interference in a diffraction experiment means that in momentum or reciprocal space the values of momentum transfer where constructive interference occurs also form a lattice (the reciprocal lattice). For example, the reciprocal lattice of a simple cubic real-space lattice is also a simple cubic structure. Another example, the reciprocal lattice of an FCC crystal real-space lattice is a BCC structure, and vice versa. The aim of the Ewald sphere is to determine which lattice planes (represented by the grid points on the reciprocal lattice) will result in a diffracted signal for a given wavelength, , of incident radiation.

The incident plane wave falling on the crystal has a wave vector whose length is . The diffracted plane wave has a wave vector . If no energy is gained or lost in the diffraction process (it is elastic) then has the same length as . The difference between the wave-vectors of diffracted and incident wave is defined as scattering vector . Since and have the same length the scattering vector must lie on the surface of a sphere of radius . This sphere is called the Ewald sphere.


...
Wikipedia

...