Electron crystallography is a method to determine the arrangement of atoms in solids using a transmission electron microscope (TEM).
It can complement X-ray crystallography for studies of very small crystals (<0.1 micrometers), both inorganic, organic, and proteins, such as membrane proteins, that cannot easily form the large 3-dimensional crystals required for that process. Protein structures are usually determined from either 2-dimensional crystals (sheets or helices), polyhedrons such as viral capsids, or dispersed individual proteins. Electrons can be used in these situations, whereas X-rays cannot, because electrons interact more strongly with atoms than X-rays do. Thus, X-rays will travel through a thin 2-dimensional crystal without diffracting significantly, whereas electrons can be used to form an image. Conversely, the strong interaction between electrons and protons makes thick (e.g. 3-dimensional > 1 micrometer) crystals impervious to electrons, which only penetrate short distances.
One of the main difficulties in X-ray crystallography is determining phases in the diffraction pattern. Because of the complexity of X-ray lenses, it is difficult to form an image of the crystal being diffracted, and hence phase information is lost. Fortunately, electron microscopes can resolve atomic structure in real space and the crystallographic structure factor phase information can be experimentally determined from an images Fourier transform. The Fourier transform of an atomic resolution image is similar, but different, to a diffraction pattern—with reciprocal lattice spots reflecting the symmetry and spacing of a crystal.Aaron Klug was the first to realize that the phase information could be read out directly from the Fourier transform of an electron microscopy image that had been scanned into a computer, already in 1968. For this, and his studies on virus structures and transfer-RNA, Klug received the Nobel Prize for chemistry in 1982.